library(cartomisc)
library(sf)
#> Linking to GEOS 3.8.1, GDAL 3.1.1, PROJ 6.3.1
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(ggplot2)
Create buffer areas with attribute of the closest region
# Define where to save the dataset
extraWD <- tempdir()
# Get some data available to anyone
if (!file.exists(file.path(extraWD, "departement.zip"))) {
githubURL <- "https://github.com/statnmap/blog_tips/raw/master/2018-07-14-introduction-to-mapping-with-sf-and-co/data/departement.zip"
download.file(githubURL, file.path(extraWD, "departement.zip"))
unzip(file.path(extraWD, "departement.zip"), exdir = extraWD)
}
- Reduce the dataset to a small region
departements_l93 <- read_sf(dsn = extraWD, layer = "DEPARTEMENT")
# Reduce dataset
bretagne_l93 <- departements_l93 %>%
filter(NOM_REG == "BRETAGNE")
bretagne_regional_2km_l93 <- regional_seas(
x = bretagne_l93,
group = "NOM_DEPT",
dist = units::set_units(30, km), # buffer distance
density = units::set_units(0.5, 1/km) # density of points (the higher, the more precise the region attribution)
)